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SUMMARY 

Starting with Darcy’s law, rearranged and expressed in terms of the local carrier 
density at a given temperature, general equations are derived for the spatial and 
temporal density distribution functions, average densities and column protiles of the 
mobile-phase fluid, and the observed (column-averaged) capacity factor(s) and 
column profiles of the solute component(s). These more direct, exact and tractable 
equations are applied to gas, liquid and supercritical fluid chromatography, and the 
results are discussed. 

INTRODUCTION 

In all chromatographic systems there is necessarily a pressure (or density) 
gradient of the mobile phase along the column. A fundamental problem, especially in 
packed-column supercritical fluid chromatography, where the mobile phase is both 
non-ideal and highly compressible, and column pressure drops may be substantial’-‘, 
is accurately relating an observed solute retention parameter (e.g., the capacity factor, 
k’) to the column inlet and outlet conditions and appropriate column-averaged 
quantities. Therefore, the ultimate goal of the present study is to provide a generalized 
solution to this basic problem by formulating sufficiently exact and numerically 
tractable integral equations, applicable to gas (GC), liquid (LC) and supercritical fluid 
(SFC) chromatography. 

Starting with Darcy’s law under isothermal conditions and neglecting what are 
normally minor temperature-gradient effects in analytical SFC7, LC8 and GC’, 
general equations are derived for the spatial and temporal distribution functions in 
a column (packed or capillary), in terms of the local density, isothermal compressibility 
coefficient and viscosity of the mobile phase, where the last two properties depend on 
the local density as well. The spatial and temporal distribution functions, which 
essentially describe how the mobile-phase density varies with its position and residence 
time, respectively, in the column, are then applied to obtain general expressions for the 
spatial and temporal average densities, and the related column profiles, for prescribed 
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inlet and outlet conditions. Similarly, starting with an expression for the solute 
capacity factor in terms of the local carrier density, the observed (or column-averaged) 
capacity factor is related to temporal averages involving the mobile-phase density. It is 
shown that the derived equations yield both new and familiar results for GC and LC. 
Their application to SFC, which will be covered in some detail in the seond part of this 
investigation”, is also briefly considered. (Note that alternative approaches for SFC, 
treating some of the same aspects as the present study, are developed in refs. 3,6 and, 
most noteworthy, 7.) 

It should be emphasized that the isothermal distribution functions are ultimately 
expressed in terms of density, rather than pressure, where the former is the more 
convenient and natural state variable. There are three compelling reasons for this 
outcome. First, application of the condition of conservation of mass flow to Darcy’s 
equation introduces a density factor which, in general, cannot be directly replaced by 
a term or terms involving pressure, using an equation of state that is both manageable 
and realistic (this is especially true for SFC). This would lead to cumbersome 
numerical evaluations and/or unnecessary (and, perhaps, invalid) approximations. 
Second, according to a recently developed, unified molecular theory of absorp- 
tion 11*12 and adsorption 13*r4 chromatography, solute retention (e.g., k’) is predicted 
to be a universal function of the reduced temperature and density (not pressure) of the 
mobile phase. Third, the isothermal viscosity of the mobile-phase fluid is a better 
behaved function of density and, according to theory, is more sensibly represented in 
terms of density’ ‘. 

THEORY 

According to Darcy’s law, at constant column temperature and for apparent 
Reynolds numbers within an acceptable upper limit’, the linear velocity of the mobile 
phase, U, is related to the pressure gradient in the column, dP/dx, and the viscosity of 
the mobile phase, q, by 

u = -(B/q) (dP/dx) (1) 

where B is the specific permeability coefficient of the column. In general, U, r~ and 
dP/dx are local values, i.e., they are all functions of x, the distance from the inlet of the 
column, at which x = 0 (and, at the outlet, x = L, the column length). Multiplying the 
numerator and denominator on the right-hand side of eqn. 1 by dp, where p denotes 
the local mobile-phase density, and rearranging, one has 

dx = -(B/V) @P/~P)& (2) 

where the partial derivative is introduced to affirm the isothermal condition. Eqn. 
2 relates a differential spatial element to a differential density element and is used to 
describe how the carrier density varies with the distance along the column. It also 
follows that a, q and (~?P/dp)~ may be expressed as functions of p. 

Conservation of mass flow requires that, through any cross-sectional area of the 
column, 

up = u,p, = constant (3) 
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where the subscript o refers to the column outlet. Combining eqns. 2 and 3, one finds 

dx = -(WP WVPMP = - C&(pWp (4) 

where C = B/u,p,, and where 

MP) = fl- lP wvP)T = ol@)-l (5) 

is the unnormalized, spatial distribution function and fl = p-’ (&I/@)~ is the 
isothermal compressibility coefficient of the carrier fluid. 

The unnormalized, temporal distribution function, I&@), which is used to 
describe how the mobile-phase density varies with its residence time in the column, is 
formulated by applying the usual definition of u as the time derivative of distance (x): 

u = k = dx/dt (6) 

Eqns. 3-6 combine to give 

dt = -ED,(p)dp (7) 

which relates a differential temporal element to a differential density element, where 
E = C/u,p, = B/(uopo)’ and where 

D,(p) = v- ‘P2W/~Ph = Phs)- l = P&(P) (f-9 

Note that eqns. 4 (with 5) and 7 (with 8) have a common “core”, viz., qW1(6P/6p),. 
The mobile-phase density, averaged over the length of the column, i.e., the 

spatial average density, (P)~, is simply 

L L 

dx (9) 

From eqns. 4 and 9, 

where D,(p) is given by eqn. 5 and p = pi (inlet density) at x = 0 and p = p. (outlet 
density) at x = L. 

The mobile-phase density averaged over the residence time in the column, i.e., 
the temporal average density, (p),, is simply 
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where t, denotes the total residence time of typical mobile-phase molecules, or the 
migration time for truly unretained solute molecules (peak-maximum value). From 
eqns. 7 and 11, 

(P>, = j-ih,, dp/jMP) dp (12) 

PO PO 

where D,(p) is given by eqn. 8 and p = pi at t = 0(x = O)andp = poatt = t,(x = L). 
To determine numerical values for the integral limits in eqns. 10 and 12, p0 and pi, 

at the column operating temperature, T, and the respective pressures, PO and Pi, one 
needs reliable equation-of-state information for the mobile-phase fluid being studied 
(gas, liquid or supercritical fluid). Evaluation of these integral equations (as well as 
subsequent relationships) also requires a knowledge of q(p) at T (e.g., by fitting 
tabulated viscosity datai5) and /I(p) at T (again, from equation-of-state data), over the 
density range p0 to pi. 

Before considering a retained solute component, let us first derive other useful 
equations for averaged mobile-phase or unretained-solute quantities. In general, it 
follows from eqns. 10 and 12 that the average value of the nth power of the carrier 
density, (P”)~, where j = x or t, is given by 

(13) 

wheren= 1,2,3,4 ,.... Also, the average linear velocity of the mobile phase, (u), is 
obtained from 

L 1” 

<u> = L/t,, = dx 
s IS 

dt 

0 0 

(14) 

Using eqns. 4, 7-10 (with E = C/u,& and 14, one finds 

(u> = Lltu = Wol(P)x (15) 

where (P)~ is given by eqn. 10. Multiplying eqn. 15 by the effective cross-sectional area 
of the column, & (assumed to be constant throughout the column), where LAeff = 
V, is the void volume of the column, and rearranging, one obtains 

where, with units of ml for V,, g/ml for (P)~ and minutes for tu, riz = uopoAefr is then the 
observed mass flow-rate of the mobile phase in units of grams per minute. 
Furthermore, V,(p), or ht, represents the total mass of mobile-phase fluid required 
to sweep typical carrier molecules or unretained solute molecules from the inlet to the 
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outlet of the column. This “void mass” is designated as G,. Eqn. 16 suggests two 
possible methods for determining G,: (a) measurement of V, and computation of (P)~; 
(b) measurement of lir and I,. 

Turning now to a retained solute component (subscript s) and comparing its 
linear velocity with that of the mobile phase or an unretained solute component 
(subscript u) one has 

u=k = dx/dt = dxldt, (17) 

us = xs = dxldt, = u/( 1 + k’) (18) 

where k’ is the local capacity factor of the solute, i.e., the value at column position x, 
corresponding to a local density p. Therefore, from eqns. 3-5, 7, 8, 17 and 18, one 
obtains the following equations for the observed (peak-maximum) retention times, tu 
and t,, and the observed or temporal-averaged capacity factor, (k’), 

L Pi 

tu = (l/u) dx = E D,(p) dp 
f f 

(19) 

cl p, 

L Pi 

t, = 

s 
[( 1 + k’)/u] dx = E 

s 
(1 + k’) D,(p) dp (20) 

0 0 

Pi 

w, = 0s - t”w” = j,.,, &/I t D,(P) dp (21) 

po p0 

It also follovvs from eqns. 16 and 21 that the net retention mass, (G,), defined by 

(G,) = G, - G, = riz(ts - tJ (22) 

where G, is the mass of mobile phase at T required to sweep the retained solute 
component from the inlet to the outlet of the column, is related to (k’), by 

(6) = Ws - t,) = +&(k’)t = ~v/,(pMk’h = (p>x<vn) (23) 

where (I’,,) = I’,#‘), is the observed net retention volume. Eqn. 23 should prove to 
be particularly useful in SFC. 

The local capacity factor in fluid-absorption chromatography”*” is predicted 
to have the general form 

k’ = kC exp(ap + bp2) (24) 

where a ~0, b> 0 and k’ + k: as p + 0. Inserting eqn. 24 into eqn. 21, one obtains 

<O = k; <exp(ap + bp2)>I (25) 
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It is important to note that (k’), is proportional to the temporal average of the 
exponential in eqn. 25, which, in general, cannot be rigorously replaced by an 
exponential involving temporal averages of powers of the density. However, if 
(pi - pO)/pO is sufficiently small with respect to unity, a reasonable approximation is 
possible. Rewriting eqn. 24 as 

expanding the second exponential in eqn. 26 as a power series in p, and applying eqns. 
13 (with j = t) and 21, one obtains 

(0, = k (exp[&>t + KP%) [1 + a2((~2>t - (P)W + 

ubKp3h - <P>t<P2>t) + b2KP4>t - (P2>,2)/2 + . ..I = 
K evbWt + KP~>J (27) 

It can be shown that if up + bp2 < 0, then (exp(ap + bp2)) 2 exp(u(p), + b(p2)J, 
thus establishing an upper limit on this approximation. 

Finally, let us obtain the salient equations for generating the various column 
profiles. The local mobile-phase density, p, at a fractional distance x/L from the 
column inlet is, from eqn. 4, 

x,L = jdx,/j, = j&(p) dp/jkp) dp 

0 0 P PO 

(28) 

As p is inversely proportional to u, eqn. 28 may also be used to construct U/U, VS. x/L 
profiles. The local density, p, when the carrier or an unretained solute has spent the 
fractional time r,/t, on the column is, from eqns. 7 and 17, 

which, with eqn. 28, also permits the construction of r,/tU vs. x/L profiles. The local 
mobile-phase density, p, corresponding to the fractional solute migration time z,/ts on 
the column is, from eqns. 7 and 18, 

7,/t, = j’dt//dt. = /(I + k’)&(p) dp//(l + W,(p) dp 

0 0 P PO 

which, with eqn. 28, may also be used to construct T,/t, vs. x/L profiles. 

APPLICATIONS AND DISCUSSION 

Let us begin by examining gas-liquid chromatography (GLC) with, in general, 
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a non-ideal mobile phase. The equation of state for a non-ideal carrier gas under fairly 
high, but not extreme, inlet-pressure conditions (Pi < 10 atm), is well represented byl6 

(PWW = P[l + (&&/MC)1 = Pi1 + @cc~/wII (31) 

where R is the gas constant, T is the column temperature, and MC and B,, denote the 
molar mass and second virial coefficient, respectively, of the neat carrier gas. From 
eqn. 31, 

P@WP), = W/W P [l + WLPIWI (32) 

From published viscosity data” and, according to theory9, the viscosity of the carrier 
gas within the stated pressure limit is well represented by 

? -I = q;’ [l + a,p] 

where a, < 0 is a constant (for a given carrier gas and temperature) and 1 
p + 0. Through second power in density, eqns. 5, 32 and 33 yield 

D,(P) = @ (1 + A&) 

where I = q;’ (RT/M,) = constant, and 

(33) 

rtc as 

(34) 

(35) 

From eqns. 10 and 34, the spatial average density, (p&, for a non-ideal carrier 
gas is then 

<P>XIPO = J!(P) * [1 + &I (36) 

where 

C(P) = (n/m) Urn - l)W - 111 (37) 

1 + A, = [l + &oJ’iWll[l + &&WI (38) 

and where r = pi/pO, and A, -g 1 is a small correction term (see below). Applying eqns. 
35-38 to carbon dioxide at 310 K, where a, = -0.786 ml/g”, B,, = - 114 ml/mol” 
and, hence, A, = -5.967 ml/g, and letting Pi = 5 atm and PO = 1 atm (from eqn. 31, 
pi = 8.850. 1O-3 / 1 g m , p. = 1.738 * 1O-3 g/ml and, hence, r = 5.092), one calculates 

(p>dpo = 3.4916 (39) 

where J;(p) = 3.5039 and A, = -0.0036. Therefore, the correction term is trivially 
small and (p)JpO under the chosen conditions is very well approximated by J:(p). 
(For more common GC carrier gases, such as helium, hydrogen and nitrogen, which 
have much smaller B,, values” and, hence, A, values, the correction term would be 
one order of magnitude smaller.) 
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It is of practical interest, for the accurate determination of net retention volumes, 
to compare (~)~/p~ from eqn. 39 with the value which one would obtain by assuming 
ideal-gas behavior: 

(PMPO = w,/p0 = JW) (40) 

where 

G(P) = (2/3) [(Pi/PA3 - lI/[(Pi/PoY - 11 (41) 

is the reciprocal of the well known Martin-James compressibility factor, 8(P). With 
Pi/PO = 5, eqns. 40 and 41 give 

(P>$Po = 3.4444 (42) 

If the volumetric flow-rate of the carrier gas is determined at T = 310 K and P, = 
1 atm, and is denoted by f’(T, P,,), then the more exact treatment gives the following 
result for the net retention volume, (V,), at T and (P)x 

<vn) = 0s - fu) i/‘(T, 0%) = 0s - ~1 (P,/<PM i/‘(T, Po) (43) 

while the ideal-gas assumption would give 

(Vn> = 0s - tu) (Pol(P)J W, Po) (44 

where t = h/p. From eqns. 39 and4244 it is seen that, with carbon dioxide as the 
carrier gas and under these experimental conditions, the ideal-gas assumption would 
lead to an error of + 1.37% in the determination of ( I’,,). Fortunately, with the more 
commonly used carrier gases, the error would be one order of magnitude smaller16. 

Turning to the temporal average density and proceeding as before, eqns. 8, 12 
and 34 give 

MP) = ZP2(Z + &P) (45) 

(PhIPo = J!(P) . [1 + 41 (46) 

where 

1 + At = 11 + ~cPoG4(Pw[l + -hPo&(P)l (47) 

and where A, and C(p) are given by eqns. 35 and 37, respectively. For carbon dioxide 
and under the same experimental conditions, one calculates values of A, = -0.0025 
(again, a trivial correction), (p)Jpo = 3.8328 and (P),/P,, = $(P) = 3.7742, where 
the former average is 1.55% higher than the latter. Also, provided the inlet pressure is 
not extreme (Pi < 10 atm.), GC column profiles based on density distributions should 
be within a few percent of those based on pressure distributions. 
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Concluding the discussion of GC by considering a retained solute component, 
the local k’ through the first power in density is’ ‘*r2 

k’ = k: exp[(2B,, - rF)p/M,] (48) 

where B,, is the carrier gas-solute interaction second virial coefficient and v” is the 
infinite-dilution partial molar volume of the solute in the stationary liquid. Expanding 
the exponential in eqn. 48 as a power series in p, applying eqns. 13 and 21 and taking 
the logarithm of the result, one obtains, through the first power in density, 

ln (0, = ln kb + WL - ~~P,/W [<PWP,I 

where <PMP~ = 6(p). Replacing pO/M, by P,,/RT (with negligible error) and 
approximating (p)Jp,, by (P),/Po = A(P) (with up to a few percent error; see above), 
one finds 

In (k’), x In k, + [(2B,% - rF)Po/RTj . J:(P) (50) 

which is a more approximate, but familiar, resultg. 

Using the present density formalism, treatment of averages in liquid chro- 
matography is even more straightforward. Analysis of equation-of-state information* 
and viscosity data r5 for dense fluids indicates that D,(p) follows the form 

&(P) = CP’ (51) 

where c is a constant and I > 0 may be as large as 4. Accordingly, from eqns. 8,10,12 
and 37, 

(PMPO = Jr::(P) (52) 

(P>tlPo = JXP) (53) 

Further, as it is unlikely that, under normal LC operating conditions, the outlet and 
inlet densities will differ by more than 5% (1.00 < pi/PO < 1.05), it follows that 

(P>x x (P>t R (Pi + Po)/~ (54) 

with a maximum error of about 0.1%. Also, if the local k’ can be described by eqn. 24, 
then, from eqn. 27, 

In (0 z In k; + U(p)j + b(p)f (55) 

where j = x or t, (p’)j w (p)f and (p)j x @i + pJ/2, the arithmetic-mean value. 
Note that, for liquids, pi and p. may be calculated, with acceptable accuracy, using the 
Tait equation of state* and knowledge of Pi and PO at T. 

SFC, on the other hand, is by no means as straightforward. The mobile phase is 
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very non-ideal (in contrast to GC) and highly compressible (in contrast to LC). As 
a result, D,(p) and D,(p) are more complex analytical functions of p. Although the 
second part of this investigation” treats applications to SFC in great detail, the utility 
of the present approach in SFC will, nevertheless, be illustrated here. 

The Jacobsen-Stewart modification of the Benedict-Webb-Rubin (BWR) 
equation of state yields exceptionally reliable PVT data, over very wide ranges of 
pressure and temperature, for low-molar-mass, non-polar fluids’8*‘g. Using this BWR 
equation of state and tabulated viscosity data15, the “core” of D&) and D,(p), 

rl -I * (dP/~?p)~, can be readily and accurately generated as an analytical function of p, 
at the desired temperature, for carbon dioxide and light hydrocarbons’O~‘g. For 
carbon dioxide an excellent lit to rl - ’ (6P/6p), is obtained with a seventh-order 
polynomial in plO: 

(56) 

It follows from eqns. 5 and 8 that 

7 

D,(p) = 1 clP1+2 
I=0 

(58) 

from which the various mobile-phase averages and column profiles may be calculated, 
once the cI values have been determined. 

Table I gives some numerical results for an SFC (packed) column, with carbon 
dioxide as the mobile phase at 320 K, having an inlet pressure Of Pi = 120 bar and an 
outlet pressure of PO = 100 bar, with respective densities of pi = 0.6331 and p0 = 

TABLE I 

NUMERICAL RESULTS FOR SFC COLUMN PROFILES WITH CARBON DIOXIDE AT 320 K 

Column inlet: Pi = 120 bar; pi = 0.6331 g/ml. Column outlet: PO = 100 bar; p., = 0.4497 g/ml. 

1.408 0.000 0.000 0.710 
1.367 0.165 0.185 0.732 
1.326 0.308 0.340 0.754 
1.285 0.432 0.470 0.778 
1.245 0.541 0.581 0.803 
1.204 0.636 0.675 0.831 
1.163 0.722 0.757 0.860 
1.122 0.799 0.828 0.891 
1.082 0.870 0.891 0.925 
1.041 0.937 0.948 0.961 
1.000 1.000 1.000 1 .OOo 



SPATIAL AND TEMPORAL COLUMN PARAMETERS IN GC, LC AND SFC. I. 175 

0.4497 g/ml. Listed in the first column are local densities, given as p/pO, in ten equally 
spaced decrements from pi to p,, (note that these p values can be easily converted to 
P values using the extended BWR equation of state”). For the purpose of examining 
mobile-phase profiles, the values in the second (fractional distance, from eqn. 28), 
third (fractional residence time, from eqn. 29) and fourth (relative velocity, from eqn. 
3) columns are computed. Note also that the arithmetic mean of p/p0 is 1.204, whereas 
(P>~IP~ = 1.241 (f rom eqn. 10) and (p),/p, = 1.252 (from eqn. 12). The result for the 
temporal average density, for example, reveals that the mobile phase is spending 
relatively more time in the high-density, inlet region of the column, where it is moving 
with a relatively slower velocity. 

From Table I it is seen that the arithmetic-mean density is reached when typical 
mobile-phase molecules have passed through 63.6% of the column length and have 
spent 67.5% of their residence time in the column. Therefore, the initial (inlet) rate of 
change of p/p0 with x/L or 7,/t, is smaller than the final (outlet) rate. At both the spatial 
and temporal midpoints (x/L = 0.5 and 7,/t, = 0.5) the local density is greater than the 
arithmetic-mean density. It is also apparent that a typical carrier molecule requires 
over half of its total residence time to reach the positional midpoint of the column. 

Fairly exact and detailed calculations and analyses, such as those outlined 
above, for both the mobile phase and retained solutes”, are therefore possible for 
SFC. At this stage, the procedure is limited to carbon dioxide or a light hydrocarbon as 
the neat mobile phase. Also, the theory, in its present form, is not applicable to 
density-programmed SFC. 

CONCLUSIONS 

The equations derived here permit a more tractable and exact approach to 
obtaining and analyzing average densities and column profiles of gas, liquid and 
supercritical fluid mobile phases. They also provide a more direct means of relating 
observed solute retention quantities to temporal density averages ((p”),), which is of 
practical importance in packed-column SFC’0*20. 
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